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Calculations are presented for the characteristics of instability waves in the initial 
mixing region of twin circular supersonic jets. Two models for the basic jet flow are 
used. In  the first, the jets are modelled as two circular vortex sheets. In the second, 
realistic velocity and density profiles are used. It is shown that the unsteady flow 
fields of the two jets interact before the time-averaged jets flows have merged. The 
normal modes or instability waves are classified by their symmetry properties in the 
twin-jet case and their asymptotic behaviour for large jet separations. Calculations 
of the growth rates and phase velocities are made for these modes as a function of jet 
separation and mixing-layer thickness. The associated pressure distributions are also 
presented. In  the realistic jet profile calculations the effect of jet separation is found 
to be relatively weak. For modes that are even about the symmetry plane between 
the two jets the pressure levels are found to increase near this plane as the jet 
separation decreases. 

1. Introduction 
When supersonic jets from convergent-divergent nozzles operate a t  off-design 

conditions they can produce intense screech tones. Powell (1953) made early 
observations of this phenomenon and proposed a feedback mechanism for the screech 
tone production. More recent experiments and analysis by Tam, Seiner & Yu (1986) 
showed that the feedback loop consists of downstream-propagating large-scale 
structures in the jet mixing layer that interact with the shock cell structure to 
generate upstream-travelling acoustic waves. If these acoustic waves trigger 
additional flow disturbances at the jet lip with the correct phase then the feedback 
loop is established. Analyses, based on this model, have made excellent predictions 
of screech tone frequencies in both circular and non-circular jets; see Tam (1986) and 
Morris, Bhat & Chen (1989). 

Seiner, Manning & Ponton (1988) showed experimentally that for two closely 
spaced supersonic jets, operating off-design, the dynamic loads associated with the 
screech tone can reach levels, upstream of the jets’ exits, that could result in 
structural damage. Tam & Seiner (1987) noted that the screech tone frequency of the 
twin jets was slightly different to  that of the single jet and that the acoustic intensity 
in the internozzle region exceeded that of the direct sum of two non-interacting 
screeching jets. This suggests that  there is a strong interaction between the unsteady 
flow and acoustic fields of the two jets. The analysis and calculations described in this 
paper help to quantify the effects of jet separation and operating conditions on the 
nature of this interaction. 

Turbulent mixing in free shear flows is controlled by the dynamics of large-scale 
coherent structures. The local characteristics of these structures may be described by 
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linear instability theory. This has been demonstrated by the experiments of Gaster, 
Kit & Wygnanski (1985), and Petersen & Samet (1988) among others. In their 
experiments they compared predictions of the amplitude and phase of the axial 
velocity fluctuations, based on linear stability theory, with phase-averaged 
measurements in an excited shear layer and a jet. The agreement between 
predictions and experiment was very good though only the local distributions and 
not the amplitude were predicted. This close agreement between the predictions of 
linear stability thoery and the properties of the large-scale coherent structures has 
formed the basis for theories of turbulent mixing and supersonic jet noise. For 
example, Tam & Morris (1980), and Tam & Burton (1984a, 6 )  predicted the noise 
radiation from instability waves in supersonic shear layers and jets and obtained 
very good agreement with experiment. 

For supersonic jets the three main components of noise radiation are turbulent 
mixing noise, broadband shock-associated noise and screech. In  each case, the 
essential component of the turbulence responsible for noise generation is the large- 
scale structures. It should be noted that this is not the case for subsonic jets where 
a complete theory for noise generation and radiation is not available. Tam (1987) 
showed how predictions could be made for each noise component in a supersonic 
circular jet using an instability wave model for the large-scale structures. 

In  the present paper the properties of the instability waves or large-scale turbulent 
structures in the initial mixing region of twin circular supersonic jets are determined. 
Two models for the basic jet flows are used. In  the first, the jets are modelled as two 
circular vortex sheets. I n  the second, realistic mean velocity and density profiles are 
used. Though the former model fails to provide quantitative results it does help to 
explain the observed modes of instability and interactions predicted by the more 
realistic model. The cdculations examine whether the instability growth rates, and 
hence the amplitudes of the large-scale structures, are modified as the jet separation 
and operating conditions vary. I n  addition, the corresponding changes in the 
instability wave phase velocity are predicted. It is shown that the unsteady flow 
fields associated with the instability waves do interact before the time-averaged jet 
flows have merged. However, this interaction is relatively weak for the operating 
conditions considered. In  $2 the general equations of motion and analytic solutions 
common to both models are developed. The details of the vortex sheet model and its 
predictions are then described in $3. Section 4 contains the numerical procedures and 
calculations for the realistic jet profiles. Finally, the role of these predictions in and 
their relationship to experimental observations of the twin-plume resonance 
phenomenon are discussed. 

2. Analysis 
Consider the two circular jets shown in figure 1.  The time-averaged jet flows are 

assumed to be symmetric about the (x, 2)- and (x, y)-planes, where the x-coordinate 
is normal to the jet exit planes. The centres of the jets are separated by a distance 
2h. Throughout this analysis the variables are non-dimensionalized with respect to 
the jet velocity uj, jet density pj and jet radius aj .  These values are taken to  be the 
fully expanded jet properties as defined by Tam & Tanna (1982). These values are 
described below. In  the annular mixing regions of the two jets, before they have 
merged, there are three flow regions. In region (i) ,  the potential cores of the jets, the 
mean velocity and density are constant. Region (iii) represents the stationary fluid 
surrounding the jets. I n  region (ii), the annular mixing region, the mean velocity u 
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FIGURE 1 .  Schematic of twin-jet cross-section and coordinate systems. 

and density p are variable. Polar coordinate systems are introduced (rl,O1) and 
(r2,  8,) with origins on the jet centrelines. The mean velocity and density of each jet 
are assumed to be a function of their radial coordinates only. This is the locally 
parallel flow approximation. The potential cores have radii R, and the outer edges 
of the mixing regions have radii R,. The mean static pressure is assumed to be 
constant. The large-scale coherent structures are modelled as instability waves. Their 
behaviour is governed by the unsteady, linearized, compressible equations of motion. 
Thus, for example, in either polar coordinate system separable solutions for the 
pressure fluctuation are sought in the form 

p ( x ,  t )  = $ ( r )  exp [i(kx+nO-wt)], (2.1) 

where k is an axial wavenumber, n is an azimuthal mode number, and w is a radian 
frequency. The radial variation of the pressure fluctuation is then found to satisfy the 
equation 

where Q = o - k t i ,  

and M: = uf/ci, where cj is the fully expanded jet speed of sound. Equation (2.2) 
reduces to Bessel's equation in regions of constant mean velocity and density. 

A solution for the pressure fluctuations outside the jet mixing layers in region (iii) 
may be obtained in either polar coordinate system in the form 

m 

p(r ,B ,x ,  t )  = B,H',"(iA,r)exp[i(kx-wt+ne)l, (2.3) 
n=--00 

where 
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Po is the non-dimensional mean de,nsity in the ambient medium which is equal to the 
jet static temperature ratio, q/q. The branch cuts for A, are chosen such that 

-in < argh, < in. 

This ensures that the solutions decay as r +  00 or are outgoing waves, for positive 
frequency. The symmetry properties of the mean velocity and density field, for 
example 

indicate that the eigensolutions should be odd or even about the (x,y)- and ( x , z ) -  
planes. From the latter symmetry property (the former symmetry property is used 
below) the general solution for the pressure fluctuations in the outer region may be 
written 

U ( y ,  2 )  = %( --y, 2) = U f y ,  - z ) ,  

m 

p(r* ,  7-23 81, d,, x, 4 = C ~ , W $ ) ( i A ,  r * )  exp (in821 
n=-m 

- + H g ) (  ih, r,) exp [in(n - f?,)]} exp [i(lcx - w t ) ] ,  (2.4) 

where the choice of sign depends on whether the solution is to be odd or even about 
the (x, z)-plane of symmetry. 

It should be noted that this solution does not just represent the sum of the 
contributions from two, non-interacting, individual jets, though the form could then 
be the same. It is simply a convenient form of the separable solution in the outer 
region. The influence of the second jet is included when this general form of outer 
solution is matched with the solution in the interior of each jet. I n  the present case 
the fluctuations in each jet are affected not only by the outgoing solutions that would 
exist for an individual, isolated jet, but also by the incoming solutions from the 
second jet. These two contributions are included in the outer solution (2.4). 

In order to match the outer solution (2.4) with the pressure fields in regions (if and 
(ii) it is convenient to write the solutions in region (iii) in terms of only one of the two 
polar coordinate systems. This may be accomplished using Graf s Addition Theorem 
(see Tranter 1968). For example, we may write 

m 

H$)(iho r,) exp [in(n - el)] = C H$ls(2ih0 h)  Js(ih, r,) exp (id,) .  (2 .5 )  
s=-m 

Then (2.4) may be written 
m W 

P(?,, 6,) = C ~ X P  (inf?z) Z BsPsn(i&rz), (2.6) 

where Pan(() = s s n  Hi1)(() &fC'is(2& -h) J n ( O >  (2.7) 

n--w s=--Oo 

and Ssn is the Kronecker delta function. It should be noted that 

and 

(2.8a) 

(2.8b) 

The influence of the second jet is seen in (2.7). The first term on the right-hand side 
represents the outgoing waves from the jet a t  y = --h. The second term represents 
the incoming waves from the jet a t  y = h. For large h this latter term is very small 
and the interaction between the jets is very weak. 

The normal modes for the pressure fluctuation given by (2.6) may be separated 
further into modes that are odd or even about the (x, y)-plane. This is accomplished 
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by first setting s = - s  and n = -n and adding the resulting equation to (2.6). Then 
the pressure fluctuation may be written 

m m  

~ ( ~ 2 3  0,) = C C [Fs cos (no,) + iGs sin (no,)] p,n(i& r2) > (2.9) 
,=-m s=- a, 

where F, = $[Bs + ( -  l)’B-,], (2.10a) 

and G, = i[B, - ( -  l)sB-s]. (2.10b) 

A similar solution may be found for the pressure fluctuations in the potential core 
region. This may be written 

m 

p(r,, 8,) = C [ A ,  cos (no,) + iC, sin (no,)] J,(ih, T , ) ,  (2.11) 

where hf = k2 - (W - k)‘W. (2.12) 
n=--i4 

With the form of the solutions known inside and outside the jet the eigenvalues k 
may be determined by matching these solutions a t  either the vortex-sheet location 
or through the finite mixing layer. The former matching is described in the next 
section. 

3. Vortex-sheet model 
3.1. Analysis 

In  this representation of the jet flows the finite mixing layers are replaced by 
cylindrical vortex sheets of unit, non-dimensional radius. Across the vortex sheet we 
require continuity of pressure and particle displacement. The matching conditions 
require that 

where A[ ] denotes the change in the argument across the vortex sheet. If the interior 
solutions given by (2.11) are matched with the exterior solutions, (2.9), for all n we 
obtain, for the solutions that are even about the (z,y)-plane, 

n = - 0 0 , .  . . , co, 

where p’,n(E) = 8snBL1)’(E) *Eis(2 i& h)  Jn(t). 

F, = (- l)ses,  

If we use the symmetry properties of p,,, given by (2 .8) ,  and note that 

then the independent equations yielded by (3.2) may be written 
m 

C F,{r, S,, * [H2is(2iA0 h) + ( - 1)sH~!,(2ih0 h ) ] }  
8-1 

+ F 0 { ~ , S 0 , + H ~ ~ ( 2 i h 0 h ) ) = 0 ,  n = 0 , 1 ,  . . .  

where 

and 

Bg)(iho) - A ,  H;)’(iho) 
J,(iA,)-A, f6(iho) 

(w -a)’h0 J,(ih,) 
po w 2 A , J ~ ( i h , )  ‘ 

r, = 

A ,  = 

, 



298 P. J .  Morris 

In  the numcrical calculations the series is truncated a t  s = N a n d  then (3.5) yields a 
set of N +  1 homogeneous equations for F,. These may be written in matrix form, 

[A] F = 0, (3.8) 

where F is a vector of length N +  1 of the unknown coefficients F,. For a non-trivial 
solution to exist the determinant of this matrix must be zero. This provides the 
dispersion relationship between the wavenumber and frequency. 

A similar set of equations may be derived for the unknown coefficients in the series 
representing the solutions that are odd about the (x, y)-plane. These may be written 
as in (3.4): 

F, = ( -  1)'F-,; 

then the independent equations yielded by (3.2) may be written 

m 

2 G,{T, S,, f [HE$,(2ihO h)  + ( - 1)'H~!,(2ihO h)]}  = 0, n = 0, 1, . . . , co. (3.9) 

The requirement of a non-trivial solution for G, results in a dispersion relationship 
for the odd modes about the (x,y)-plane. 

A similar expression to both (3.5) and (3.9) was obtained by Sedel'nikov (1967). He 
developed dispersion relationships for multilayer jets, several jets, and jets between 
parallel walls or in rectangular ducts. In each case the jet was represented by a vortex 
sheet. No roots of the dispersion relationship were determined. Written in the form 
of (3.5) and (3.9) the off-diagonal elements vanish for large jet separations and the 
eigenvalues are the zeroes of r,. These eigenvalues correspond to the axisymmetric 
and helical normal modes of a single jet. 

It is clear that this form of the equations does not hold for zero frequency. This 
case is of interest, as it may be used in a description of the shock cell structure of the 
jet. Tam & Tanna (1982) showed how a model for the shock cell structure could be 
posed as an initial-value problem in which the fully expanded vortex sheet acts as a 
waveguide for the pressure perturbation a t  the jet exit. For the steady problem the 
matching conditions a t  the vortex sheet require that the pressure perturbation be 
zero a t  and outside the vortex sheet. Thus there is no communication between the 
two jets and the shock cell structure remains unchanged from the single-jet case. 
However, it should be noted that this is only true for jets into stationary air and some 
coupling between the steady shock cell structure could occur if the ambient air were 
in motion; see Morris (1988). 

3.2. Calculations 

There are many parameters and operating conditions that could be varied for the 
present configuration. Thus, the calculations have been limited to a set of operating 
conditions that correspond to available experiments. In the calculations for both the 
vortex sheet and the realistic mean profile representation of the jet, the diameter of 
the jet is taken to be the fully expanded jet diameter. It may be argued that in the 
case of either an over- or under-expanded jet, the jet plume will adjust its cross- 
section so as to preserve mass flux but equalize the mean'static pressure. This gives 
the following relationship, assuming isentropic flow, between the fully expanded and 
design jet dimensions : 

5-1 

(3.10) 
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FIGURE 2. Variation of the axial growth rate -k, with jet spacing. Mj = 1.32, Md = 1.0, St = 0.318. 
-, mode type I ;  ----, type 11; ---, type 111; ......, type IV. 

(5, y)-plane (z, 2)-plane Mode 

Even Even I 
Odd Even I1 
Even Odd I11 
Odd Odd IV 

TABLE 1. Classification of normal modes 

where rd is the non-dimensional design jet radius and Mj and Ma are the fully 
expanded and design jet Mach numbers respectively. 

The instability wave calculations in the vortex-sheet case provide an indication of 
the character of the results to be expected in the more realistic calculations that 
include the effects of finite mixing-layer thickness. Four types of solution may be 
classified as shown in table 1.  In  addition, each solution may be classified by the 
azimuthal mode number it approaches as the jets move further apart. 

Figure 2 shows the variation of the axial growth rate, - k, as a function of the 
separation distance between the two jets’ centrelines h. The instability wave 
frequency is 1.0 in each case. This corresponds to a Strouhal number of 0.318, ( l /n ) ,  
based on the fully expanded jet diameter and velocity. The design and fully 
expanded jet Mach numbers are 1.0 and 1.32 respectively and the jet is unheated. 
These conditions correspond to the experiments of Seiner et al. (1988). In  the 
numerical evaluation of the dispersion relationships obtained from (3.5) and (3.9) a 
value of N = 5 was used. Calculations were also performed with N = 9 with no 
significant change, even for small values of jet separation. For large separations the 
solutions approach those for the single jet and the growth rate increases with 
azimuthal mode number. Calculations are presented for mode numbers 0, 1 and 2. 
For a given mode number the most unstable mode type is a function of jet spacing. 
For example, consider the mode number 1.  For h > 1.6 the type I11 mode is the 
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most unstable, though its value does not differ greatly from the value a t  large h. 
For h < 1.6 the type I mode dominates. For the range of mode numbers and types 
considered, the mode number 1, type I mode appears to be most affected by small 
separations, showing a large increase in axial growth rate. This mode is associated 
with a motion that is even about both (x, y)- and (2, x)-planes and is dominated by 
a pair of helical motions of opposite sense about each jet. This is the type B mode 
described by Seiner et al. (1988) which they found to be the dominant mode in their 
twin-plume resonance experiments. 

The prediction that the stability of the (1 ,  I) mode is affected strongly by the jet 
separation and the interchange of dominance between modes of different typcs as the 
jet separation changes is encouraging, as it provides qualitative agreement with the 
observations of Seiner et al. (1988) and Wlezian (1987). However, these results should 
be treated with some caution as they are based on the vortex-sheet model for the jet. 
The dominant or preferred mode of a real jet is determined by the total growth of a 
given frequency disturbance through the developing shear layer. In the next section 
more realistic profiles are used to describe the jet flow. 

4. Realistic jet flow model 

4.1. Analysis 

I n  this case the mean velocity and density vary in region (ii) in a smooth, realistic 
manner. The matching between the potential core and ambient flow solutions must 
be performed using a numerical solution in the mixing layer. 

In  the potential core the solution for the pressure fluctuation takes the form given 
by (2.11). Consider, for example the modes that are even about the (x, y)-plane. For 
n = - 00,. . . , co (2.2) may be integrated from r = R, to r = R, with initial conditions 

d@ 
ji = J,(iA,R,), - = iA,J;(iA,R,). 

dr  

The corresponding numerical solutions at r = R, are denoted by 4, and 1;;. These 
solutions may be matched with the exterior solutions for all n. That is, 

and 
m 

A,#; = iAoFs,8~,(iA0R2). 
S=-m 

(4-3) 

Following the same approach as used in $3, based on the symmetry properties of @,, 
p,, and FS, a dispersion relationship may be derived from an identical system of 
equations to (3.5). However, in this case the rn and A ,  are defined by 

HF)(iAo R,) - A n  H:)’(iAoR2) 
Jn(iAoR2) - AnXn(iAoR2) 

r, = (4.4) 

and A ,  = iAO@,/$;. (4.5) 

For modes that are odd about the (x, y)-plane the dispersion relationship may be 
obtained from (3.9) with r, and A ,  defined by (4.4) and (4.5) respectively. 
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4.2. Calculations 

In the subsequent calculations it is assumed that the mean velocity and density of 
the jet flows take the same form as in the single-jet case ; up to the location where the 
jet edges meet. The mean velocity is assumed to take the form 

where 7 = [r -g(x) l /b(x) .  (4.7) 
g(z) is the radius of the potential core and b(x)  is the half-width of the mixing layer. 

The mean density is related to the mean velocity through a Crocco relationship, 

p = [ f ( y  - 1 )  a( 1 - @)&if! + @+ T,( 1 - a)]-1, (4.8) 

From the mean axial momentum integral equation a relationship may be found 
where T, is the non-dimensional ambient temperature. 

between the potential core radius and the half-width of the mixing layer; 

where 

and 

A t  some axial location 
and the present analysis, 

a, 

p2 = 1 pa2y dy. 
0 

the edges of the two jets will touch on the symmetry plane 
which assumes that the mean flow is axisymmetric relative 

to each jet’s centreline, is no longer valid. In  the present calculations the edge of the 
jet is taken to be the location a t  which the axial velocity given by (4.6) equals 0.01. 
This corresponds to a value of y of 2.58. Thus the present calculations are for values 
of jet thickness such that 

g(b) +2.58b d h. (4.10) 

A variable-step-size fourth-order Runge-Kutta algorithm is used to integrate (2.2) 
from the edge of the potential core to y = 2.58. This gives the values of 8, and ?;;. 
As in the vortex-sheet calculations the upper limit in the series representations is 
taken to be N = 5. Calculations have also been performed with N = 9 with negligible 
change in the largest elements of F, or G,. 

The vortex-sheet calculations, shown in figure 2, indicate that for large separations 
the higher azimuthal mode numbers have higher axial growth rates. Additional 
calculations show that, for the present operating conditions, the maximum axial 
growth rate occurs for n = 3. A similar result is obtained for small values of local 
thickness b(x) .  However, as the jet mixing-layer thickens, the higher-order azimuthal 
modes become damped more quickly. Figure 3 shows the variation of the axial 
growth rate - k, as a function of thickness b(x)  for a large jet separation h/r ,  = 5.0, 
for the first three azimuthal modes. I n  this and subsequent calculations the fully 
expanded jet Mach number is 1.32, the design jet Mach number is 1.0, and the jet is 
unheated. Figure 3 shows how the growth rate of the n = 2 mode rapidly decreases. 
The helical mode n = 1 has a larger growth rate than the axisymmetric mode 
n = 0 for all the values of jet thickness considered. I n  the subsequent calculations 
only the two lowest mode numbers will be examined. The calculations shown in 
figure 3 give results that are identical to the single-jet case. 

As the separation decreases, the growth rates of the various mode numbers and 
types move away from their large-separation value. Figure 4 shows this variation for 
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FIQURE 3. Variation of the axial growth rate -k, with jet mixing-layer thickness. Mj = 1.32, 

Ma = 1.0, St = 0.3, h/r ,  = 5.0. -, n = 0 ;  ----, n = 1 ;  ---, n = 2.  

O T  

0.60 

0.45 

0.40 
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FIGURE 4. Variation of the axial growth rate -k, with jet spacing. M, = 1.32, M,, = 1.0, St = 0.3, 
b = 0.2. -, mode type I ;  ----, type 11; ---, type 111; ......, type IV. 

mode numbers 0 and 1 and the four mode types. The jet thickness is b = 0.2 and the 
Strouhal number St = 0.3. The change in the axial growth rate is relatively small for 
jet separations greater than 2 radii. For these conditions the most unstable mode a t  
the closest separation achievable, before the jets' edges merge, is the (1,  IV) mode. 
This mode is dominated by two helical instabilities that are out of phase that give 
a solution that is odd about both the (z,y)- and (z,z)-planes. However, a t  other 
separations other modes are the most unstable. 
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FIGURE 5 .  Variation of the axial growth rate -k, with jet mixing-layer thickness. M, = 1.32, 
M, = 1.0, St = 0.3. -, n = 0, h/r, = 5.0; ----, (0, I), h/r6 = 1.9; ----, (0, III), h/r ,  = 1.9. 

0 0.2 0.4 0.6 0.8 1 .o 
Strouhal number, St 

FIGURE 6. Variation of the axial growth rate -k, with Strouhal number. Mj = 1.32, M ,  = 1.0, 
b = 0.2. For legend see figure 5 .  

The relative instability of the various modes a t  a given separation has been found 
to be nearly independent of jet mixing-layer thickness. For example, figure 5 shows 
the variation of axial growth rate with b(x) for the (0, I) and (0,111) modes. The 
single-jet, n = 0 value is shown for comparison. In this case, with h / r ,  = 1.9, the (0, 
111) mode is the most unstable at all jet thicknesses. 

Before considering the eigenfunctions for the various modes of instability, the 
effect of wave frequency will be considered. Figure 6 shows the variation of axial 
growth rate - k, with Strouhal number for the same modes as shown in figure 5 .  The 
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0 0.1 0.2 0.3 0.4 0.5 

Jet thickness, b 

FIGURE 7 .  Variation of the phase velocity, wlk,, with jet mixing layer thickness. M ,  = 1.32, 
Md = 1.0, St = 0.3. For legend see figure ti. 

mixing-layer thickness b = 0.2. Except for the lower Strouhal numbers the (0,111) 
mode is more unstable than the (0, I) mode or the n = 0 single-jet mode. At this 
jet thickness the most unstable frequency occurs for a Strouhal number of 
approximately 0.45 and is relatively independent of jet separation or mode type. 

The real part of the wavenumber is also affected by the jet separation. The trend 
in all the cases considered involves an increase in k ,  for the even modes about the 
(x,z)-plane and a decrease in Ic, for the odd modes as the jet separation decreases. 
However, the changes are relatively small, involving typically a 10% change from 
the single-jet value. For example, figure 7 shows the variation with mixing-layer 
thickness of the phase velocity, given by u / k , ,  for the same modes as shown in figure 
5. The phase velocity for the (0, I) mode,which is even about the (x, 2)-plane, is lower 
than the single-jet or large-separation value. Conversely, the (0, 111) mode, which is 
odd about the (x, 2)-plane, takes a higher value. It should be noticed that for larger 
thicknesses, where the instability wave is reaching its maximum amplitude or 
neutrally stable condition, there is eff'ectively no change in the phase velocity. In  this 
region the phase velocity is approximately 0.73. Thus the observed shift in the 
screech frequency for the twin jets is linked to a change in the shock cell spacing 
rather than a modification to the phase velocity of the large-scale structures. Seiner 
et aZ. (1988) did observe a 10-15 % increase in the shock cell spacing. The reason for 
this increase is unclear as, in the absence of ambient flow, the shock cell structure of 
the two jets should be independent. However, insufficient aerodynamic data for the 
twin jets are available a t  present to help to explain this observation. 

The pressure distributions associated with each mode of instability may be 
constructed by obtaining the coefficients F, or G, for a given eigenvalue. An inverse 
iteration technique is used to  obtain these values. That is, 

[Alp+'  = a P ,  (4.11) 

where CT is a scaling factor and [A] is given by (3.8). An initial guess for Fo is taken 
to be { 1 , 1 , .  . . , 1IT. This algorithm has been found to give convergence in two 
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FIGURE 8. Contours of equal pressure level, Mode (0, I). Mj = 1.32, M ,  = 1.0, St = 0.3, h/r ,  = 1.9. 
-, outer edge of the jet. Contours from -0.025 to -0.175 in steps of -0.025. 

Relative amplitude 
Mode 

number hlr ,  = 3.0 h / r ,  = 2.0 h/r ,  = 1.5 

0 0.016 0.199 0.666 
1 1.000 1.000 1.000 
2 0.001 0.098 0.155 
3 0.000 0.008 0.019 

TABLE 2 .  Variation in relative mode amplitude with jet separation, Mode (1,111). Mi = 1.32. 
Md = 1.0, St = 0.3, b = 0.2. 

iterations for the cases considered. The interior coefficients may then be found from 
(4.2). 

For convenience in the present calculations only the pressure field outside the edge 
of the jet has been determined. Equation (2.3), rewritten in terms of modes that are 
odd or even about the (x,y)-plane, is used to calculate the pressure. For example, 
figure 8 shows contours of equal pressure level for the (0, I) mode and h/r ,  = 1.9. The 
phase, given by kx--wt in (2.41, has been set to zero. It can be seen that the pressure 
field remains nearly axisymmetric. However, in the region between the two jets there 
is a loss of axisymmetry. In  this region the amplitude of the pressure is nearly 
uniform and equal to the maximum amplitude achieved a t  the edge of the jet. The 
shaded region shows the region of maximum amplitude. This is the case for all the 
modes that are even about the (z,z)-plane. 

A measure of the azimuthal mode content for each mode of instability and type is 
given by the relative magnitudes of the coefficients F, and G,. Table 2 shows how 
these amplitudes vary with jet separation for the (1,111) mode. For each separation 
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the n = 1 helical mode is dominant. However, for hlr, = 1.5 the n = 0 mode 
amplitude rises to 67 % of that of the n = 1 mode and the n = 2 mode rises to 16 YO 
of the n = 1 mode. 

5. Discussion 
The present calculations have shown how the growth rates of instability waves or 

large structures in the initial mixing region of twin supersonic jets arc affected by the 
jet separation. This interaction is caused by a coupling of the waves’ unsteady flow 
fields even before the time-averaged jet flows have merged. At a given operating 
condition the mode number and type that is most unstable is a function of the jet 
separation. However, the quantitative changes in the local growth rates are 
relatively small until the separation between the jet centrelines approaches the jet 
diameter : that is h/r ,  + 1. Though this may be achieved in theory in the case of the 
vortex-sheet model, similar calculations for the realistic jet profiles are limited to 
very small mixing-layer thicknesses. At larger thicknesses the jets merge, rendering 
the present analysis invalid. 

The influence of the jet separation on the eigenvalues can be seen from (3.5)-(3.8). 
The elements of the matrix A consist of two components : those that depend on h, the 
jet separation, and those that do not. In  fact, the easiest way to construct the matrix 
elements numerically is to first note that the components that depend on h form a 
symmetric matrix. The other terms, which only occur on the diagonal, may then be 
added. As the separation increases, the relative magnitude of the terms that depend 
on h decreases rapidly, as Hankel functions, relative to the remaining components. 
Eventually, only the terms given by r,, that occur on the diagonal, are significant. 
The numerator in (3.6) can be seen to be the dispersion relationship for azimuthal 
mode number 12 for a single jet. Thus the single-jet eigenvalues constitute the zeroes 
of the determinant of matrix A for large jet separations. 

It should be noted that the amplitude achieved by an instability wave depends on 
the integrated growth of the wave with axial distance and the local variation in the 
shape of the eigenfunction. Thus, relatively small changes in the local growth rate 
can result in large changes in the eventual amplitude of the wave. For example, using 
the data shown in figure 5, and assuming that dbldx is given by the single-jet value 
for the same operating conditions, the amplitude of the (0,111) mode is 24 % larger 
for h/r, = 1.9 compared to  h/r,  = 5.0 a t  the location where the jets merge in the 
former case. However, as mentioned earlier, the rate of spread in the twin-jet case 
may be decreased by the coflowing, entrained air between the jets. This would 
increase the relative amplitude a t  the merger location. In addition, the pressure 
levels between the jets are much higher in the twin-jet case for mode types I and 11, 
as shown in figure 8. However, it  is not clear whether changes of this order of 
magnitude would be sufficient to explain the observed changes in the near-field 
pressure levels when the twin jets resonate. 

The present analysis has considered only a part of the feedback cycle associated 
with twin-jet screech. The instability wave’s growth into the merged jet region must 
be determined. In this region the merged jet would resemble more closely a 
developing rectangular jet. In this case certain normal modes, particularly the 
flapping mode about the (2, y)-plane, might be enhanced. The interaction between 
the instability waves and the shock cell structure in the jet that gives rise to the 
upstream-propagating acoustic wave must then be described. It should be noted that 
existing theories of jet screech are’unable to predict the amplitude even for single 
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circular jets. Experimentally, the occurrence and amplitude of jet screech are very 
sensitive to small changes in the detailed geometry of the jet model and laboratory. 
So a prediction of the occurrence of resonance or its amplitude is extremely difficult. 

To assist in the extension of the present calculations to other sections of the 
feedback loop further experimental data on the aerodynamic development of the 
twin jets is required. These inctude the modification to the rate of growth of the jet 
mixing layers, mean flow contours in the merged jet region, and measurements of the 
entrained flow between the jets. 

Though the present analysis does not answer all the questions regarding the 
complex phenomenon of twin-jet resonance, it has shown how an instability wave 
analysis can provide some insight into the interaction of twin supersonic jets. 

This work has been supported by NASA Langley Research Center under NASA 
Grant NAG-1-657. The technical monitor is Dr J. M. Seiner. 

R E F E R E N C E S  

GASTER, M., KIT, E. & WYQNANSKI, I. 1985 Large scale structures in a forced turbulent mixing 

MORRIS, P.  J. 1988 A note on the effect of forward flight on shock spacing in circular jets. J .  Sound 

MORRIS, P.  J., BHAT, T. R. S. & CHEN, G. 1989 A linear shock cell model for jets of arbitrary exit 

PETERSEN, R. A. & SAMET, M. 1988 On the preferred mode of jet instability. J .  Fluid Mech. 194, 

POWELL, A. 1953 On the noise emanating from a two-dimensional jet above the critical pressure. 
Aero. Q. 4, 103-122. 

SEDEL’NIKOV, T. K. 1967 The dispersion relations for multilayer jets and for several jets. In 
Physics of Aerodynamic Noise (ed. A. V. Rimskiy-Korsakov). Moscow: Nauka. (Trans]. NASA 

SEINER, J. M., MANNING, J. C. & PONTON, M. K. 1988 Dynamic pressure loads associated with 

TAM, C. K. W. 1986 On the screech tones of supersonic rectangular jets. AIAA Paper 86-1866. 
TAM, C. K. W. 1987 Stochastic model theory of broadband shock associated noise from supersonic 

TAM, C. K. W. & BURTON, I). E. 1984a Sound generated by instability waves of supersonic flows. 

TAM, C. K. W. & BURTON, D. E. 19843 Sound generated by instability waves of supersonic flows. 

TAM, C. K. W. & MORRIS, P. J. 1980 The radiation of sound by the instability waves of a 

TAM, C. K. W. & SEINER, J. M. 1987 Analysis of twin supersonic plume resonance. AIAA Paper 

TAM, C. K. W., SEINER, J. M. & Yu, J. C. 1986 Proposed relationship between broadband shock 

TAM, C. K. W. & TANNA, H. K. 1982 Shock associated noise of supersonic jets from 

TRANTER, C. J. 1968 Bessel Functions with Some Physical Applications, Sec. 2.6. English 

WLEZIAN, R. W. 1987 Nozzle geometry effects on supersonic jet interaction. AIAA Paper 87-2694. 

layer. J .  Fluid Mech. 150, 23-39. 

Vib. 121, 175-177. 

geometry. J .  Sound Vib. 132, 199-211. 

153-173. 

TTF-538, 1969.) 

twin supersonic plume resonance. AIAA J .  26, 954-960. 

jets. J .  Sound Vib. 116, 265-302. 

Part 1.  Two-dimensional mixing layers. J .  Fluid Mech. 138, 24%27 1. 

Part 2. Axisymmetric jets. J .  Fluid Mech. 138, 273-295. 

compressible plane turbulent shear layer. J .  Fluid Mech. 98, 34S381. 

87 -2695. 

associated noise and screech tones. J .  Sound Vib. 110, 309-321. 

convergentklivergent nozzles. J .  Sound Vib. 81, 337-358. 

Universities Press. 


